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Abstract- In this paper a numerical study is carried 
out in order to establish a systematic convergence 
criteria for the Generalized Transverse Resonance 
(GTR) method. These criteria allow an optimum 
determination of the number of modes to be used 
in either side of a Finline Step Discontinuity under 
analysis. Applying the optimal modal ratio, and 
using basis functions incorporating the singular 
behavior of fields at edges and the efficient 
Singular Value Decomposition (SVD) technique, 
accurate results in the GTR method are obtained. 

Index Terms- Finline Step Discontinuity. 
Generalized Transverse Resonance Technique, Edge 
Effect. 

I. INTRODUCTION 
The GTR method used in this paper is 

studied in depth regarding the determination of 
the optimum modal ratio for given waveguide 
dimensions. This method leads to an ill-
conditioned matrix which can be expressed in a 
homogeneous matrix equation of the form 

JG G
[ ]H X  = 0 (1) 

where [H] is a complex matrix of size (m,m) and JG
X  is an m-element column vector. The elements 

of [H] are functions of a length parameter l2 
characteristic of the structure under analysis, Fig. 
1.  

In order to determine the solution of (1) we 
vary the length parameter l2 until the determinant 
of [H] vanishes. 
Instead of computing the determinant directly, 
we take the SVD and determine the minima of 
the minimum singular value as a function of l2. 
We will show that this approach is superior. 
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Fig. 1. Finline in a rectangular resonant cavity for the 
application of GTR method: (a) boxed finline step 
discontinuity (b) finline step discontinuity. 
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II. PROBLEM FORMULATION 

The application of the GTR method to a Step 
Finline Discontinuity Structure enclosed in a 
rectangular waveguide (fig. 1) needs the 
evaluation of inner products g between the G
orthonormal modal functions of the waveguide eG
and those of the slot e0 . 

G G
g = ∫∫e ⋅e0ds   (2)    

S 

where S is the surface of the slot enclosed in the 
rectangular cavity formed to use the GTR 
method. We introduce a double separable 

weighting function in the calculation of g which 
takes into account the edge effect of the field [1]: 

e 
G
'0 =WyWz e 

G
0 

G G G G
g' = ∫∫ e ⋅ e'0ds = ∫∫ e ⋅ e0WyWz ds 

S S 

1 (3)  
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This is equivalent to a generalization of the inner G
product. The electric field at the slot e'0 is given 
by the modal functions of an empty rectangular 
waveguide of width l1 and height d1 (region 1) 
and an empty rectangular waveguide of width l2 
and height d2 (region 2) (figure 1.b) as done in 
[2]. 

The electric field in the waveguide region is 
given by the transverse components of the TE 
and TM modes in a rectangular empty waveguide 
of dimensions l·b. In general 

l b +d 
g = ∫0
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∫b 
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The inner product g gives pure imaginary or 
pure real numbers which are function of modal 
indices (m,n,r,s), the physical dimensions 
(l,l1,l2,b1,b2,d1,d2), the Bessel function of first 
kind and order zero J0(x) and the Struve function 
H0(x) of order zero. 
 
According to R. Mittra et al. [3], to fulfill the 
edge condition when analyzing the bifurcate 
problem for a rectangular waveguide with the 
mode matching method, the ratio of the number 
of modes used to represent the electromagnetic 
field in both zones (waveguide and aperture) of 
the structure should equal the heights ratio. This 
condition was proved by Y. C. Shih et al. [4] in 
the analysis of step discontinuities in rectangular 
waveguides. By extrapolating this result to the 
case of GTR method applied to a short-circuited 
finline it should yield a ratio 

R = M 
=

b   (5) 
Q w 

where M is the number of terms used to expand 
the fields in the waveguide zone, Q is the number 
of terms used to expand the fields in the aperture 
zone, b is the height of the waveguide, and w the 
height of the aperture. H. Hoffmann [5] got good 
and fast convergence using 

R = M 
=1.5 b (6)

Q w 
in the case of  zero thickness [1]. 
In the case of the structure of Fig.1 we vary the 
length l2 setting l1 fixed and we search the 
resonant length l2 that cancels the determinant of 
the matrix [H] in (1). Then, we evaluate the 
convergence of the method for different values of 
R in order to obtain the optimized R value. 
 

III. NUMERICAL RESULTS 
We started by determining the optimum 

value of w in (6). In our case, the height of the 
waveguide is b and the aperture is divided into 
two regions with heights d1 and d2 respectively 
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(see Fig. 1.b). A function relating w to d1 and d2 
is sought. For the sake of comparison we choose 
d1 = 0.85 mm and d2 = 0.25 mm. These are the 
same values that were used by R. Sorrentino et 
al. [2] and M. Helard et al. [6]. 
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Fig. 2. Relative convergence phenomenon in the 
solution of the length (l2) in a finline step 
discontinuity for different modal ratios (number of 
modes in the waveguide region divided by the number 
of modes in the slot region) R. Dimension as in Fig.1: 
l1= 6.17 mm; a2 = 3.3 mm; a1 = b = 3.556 mm; d1 = 
0.85 mm; d2= 0.25 mm; εr = 2.22; f = 30 GHz. 

Fig.2 shows the evolution of the length l2 in 
terms of the number of modes M when analyzing 
a finline step discontinuity. We can summarize 
the results as follows: 

If we define w =
d1 + d2 and c 2 

Rc = 1.5 b (7) 
wc 

a smooth convergence to the solution is obtained 
when 

R= M 
≥ R (8)

Q c 

For increased values of R, smaller values of M 
are sufficient for proper convergence. Note 
however that R cannot be made indefinitely large 
by reducing Q, since a minimum number of 
modes is necessary to reproduce accurately the 
field in the aperture. Also M cannot be 
indefinitely increased because the effect of 
roundup errors can yield completely inaccurate 
results. 
 
To validate our l2 result we compared the S 
parameters calculated with GTR (by determining 

three different l2 resonance values corresponding 
to three different fixed l1 values) with the S 
parameters calculated by R. Sorrentino et al. [2] 
and M. Helard et al. [6]. An excellent agreement 
is found as shown in fig. 3. The S parameters 
calculated with HFSS simulator by Ansoft, based 
on the finite element method (FEM) [7] are also 
presented. 
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Fig. 3. Magnitude of scattering parameters of a 
unilateral finline step discontinuity for different 
frequencies 
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Fig.4. Behavior of the system determinant (dashed 
line) and minimum singular value (solid line) for a 
Modified Transverse Resonance formulation of a 
finline step discontinuity. 

Table 1: Comparison of simulation time. 

M 120 280 
Q 10 26 

t (minutes) 80.23 120.469 
l2 (mm) 3.25325 3.25105 
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Figure 4 compares the determinant (dashed line) 
with the minimum singular value decomposition 
(solid line) versus the length l2 in the case of the 
finline step discontinuity depicted in Figure 1.b. 
The zero of the determinant, which coincides 
with the occurrence of the minimum singular 
value, corresponds to the resonant length l2 of the 
studied structure. The detection of minimum 
singular value vm is easier and more accurate than 
obtaining the zeros of the determinant function. 
This is due to the existence of steep and abrupt 
changes in this function. 

V. CONCLUSION 

It has been found that fulfilling the condition 
given by (8) to fix the modal ratio allows an 
accurate determination of the resonant length for 
a boxed finline step discontinuity by using a 
small number of modes. This reduces drastically 
the CPU time. As an example, table 1 shows the 
time needed to obtain essentially the same result 
for two different pairs of M and Q number of 
modes when using a Matlab 6.5 code running on 
an Athlon processor based PC at 1.67 GHz. The 
use of the SVD method overcomes efficiently the 
numerical problems related with the ill-condition 
of the resulting matrices related with the 
homogenous system (1). This technique allows 
avoiding the poles and gradients that are common 
in the determinant function and improves the 
accuracy of the computer results.   
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