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Abstract-We consider a Kerr-type nonlinear 
guiding layer surrounded by at least one 
medium made of a negative index material 
(NIM). Three different structures are 
investigated in this work. The first structure has 
a NIM cladding, the second has a NIM 
substrate, and the third has a NIM substrate 
and cladding. Three normalized parameters are 
used to study the dispersion characteristics of 
these waveguide structures. The dispersion 
curves are obtained and the effect of the NIM 
parameters on the guidance properties is 
presented. It is found that the dispersion 
characteristic of nonlinear waveguide structure 
with NIM cladding and dielectric substrate are 
similar to those for the same structure with NIM 
substrate and dielectric cladding. However, 
when both of them are NIMs new properties can 
be seen.    
 
Index Terms- slab waveguides, dispersion, 
negative index, nonlinear media. 
 
 

I. INTRODUCTION 
 
In the past few years many scientists and 
engineers have been working on a novel 
material called negative index material (NIM) 
or metamaterial due to its unusual 
electromagnetic features [1-10]. The peculiar 
properties of NIMs were first theoretically 
studied by Veselago in 1968 [1]. He pointed 
out that the permittivity ε and permeability μ 
are simultaneously negative in such media. 
Moreover, he predicted a number of unusual 
properties of NIMs such as inverse refraction, 
negative radiation pressure, and inverse 
Doppler effect. Pendry et al. proposed an 
interesting theory [2, 3] of subwavelength 
imaging, which has led to a breakthrough in 
the field of NIMs. Developing the ideas of 
Pendry et al., Smith et al. [4] presented an 
evidence for a weakly dissipative composite 
medium displaying negative values for ε and μ. 
Recently, with the realization of microwave 
and optical structures having negative index of 
refraction, slab waveguides containing NIMs 

have been in deep concern. These structures 
may have prominent applications including 
optical waveguide sensors [6-9], antenna 
arrays [11,12], phase shifters [13], and filters 
[14].     
 
Slab waveguides in which one of the media 
exhibiting Kerr-type nonlinearity have 
received increasing attention due to their 
potential applications in many optical fields 
[15-20]. For a nonlinear guiding layer 
sandwiched between two linear media, several 
forms of the characteristic equation have been 
obtained [20,21]. Kogelnik et al. presented a 
parameterization model for linear slab 
waveguides to obtain a universal description of 
different geometries of the waveguide [22]. 
The extension of this approach to a waveguide 
structure comprising a linear guiding layer and 
a Kerr-type nonlinear substrate was presented 
by Chelkowski et al. [23]. They defined a 
power-dependent parameter and were able to 
get a concise overview of the waveguide 
properties at a given power. In 1990, the 
scaling rules for a Kerr-type nonlinear guiding 
layer bounded by two linear media were 
presented by M. Fontaine [21].   
 
In this work, we consider three nonlinear 
waveguide structures. In the first structure, a 
Kerr-type nonlinear guiding layer is bounded 
by a substrate and a NIM cladding. In the 
second structure, the nonlinear guiding layer is 
surrounded by a cladding and a NIM substrate. 
The third structure is assumed to comprise the 
nonlinear guiding layer sandwiched between a 
NIM substrate and cladding. The guiding 
properties of these structures are universally 
described in terms of three parameters: 
asymmetry coefficient, normalized film 
thickness and normalized guide index. The 
dispersion curves are obtained and the 
guidance properties are studied in terms of the 
negative parameters of the NIM.  
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II. THEORETICAL MODEL AND 
DISPERSION RELATION 

 
The geometry of the asymmetric nonlinear 
waveguide under consideration is shown in 
Fig. 1. It consists of a Kerr-type nonlinear 
guiding layer of thickness d and nonlinear 
index of refraction 2

2
22 Enn fnl α+= , where α 

is the nonlinearity constant, nf is the linear part 
of the refractive index, and E2 is the electric 
field in the guiding layer. The guiding layer is 
bounded by a semi-infinite substrate of 
parameters ( ),s sε µ  and a semi-infinite 

cladding of parameters ( ),c cε µ . The substrate 
and the cladding can be either NIMs or normal 
dielectrics with positive index of refraction. In 
this work, we restrict ourselves to s-polarized 
light (TE) and self-focusing nonlinear media 
for which α > 0.  
 
 

x

z
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Fig. 1. Kerr-type nonlinear guiding layer bounded 
by a semi-infinite cladding (εc, μc) and semi-infinite 
substrate (εs, μs).     
 
 
The guiding properties of any waveguide 
geometry can be described by three 
generalized parameters [10, 21-23]. These 
parameters are called normalized film 
thickness or normalized frequency (V), 
asymmetry coefficient (a), and normalized 
guide index (b) which are represented as  
 

 2
f s sV kd n ε µ= − ,                    (1) 

 

2
s s c c

f s s

a
n

ε µ ε µ
ε µ

−
=

−
,                           (2) 

and 
2

2
s s

f s s

Nb
n

ε µ
ε µ

−
=

−
,                            (3) 

 
where k is the free space wavenumber and N is 

the modal index given by N
k
β

=  with β  is 

the propagation constant.  
 
The normalized film thickness and the 
asymmetry coefficient are two independent 
parameters. The normalized guide index is 
obtained from the solution of the dispersion 
relation of the waveguide structure. It was 
shown that the guiding properties of a linear 
guiding layer surrounded by a nonlinear 
substrate can be described by the three above 
mentioned parameters (V, a, b) and a new 
parameter denoted as b1 given by [23]  
  

( )
2
0

1 22 f s s

Eb
n

α
ε µ

=
−

,                        (4)  

 
where E0 is the value of the field amplitude at 
the interface  z = 0. 
 
The guiding properties of nonlinear slab 
waveguides can be summarized in the 
universal dispersion curves V (b, a, b1). 
 
The dispersion relation of the waveguide 
structure shown in Fig. 1 is obtained by 
matching the fields at the interfaces z = 0 and z 
= d. In the substrate and cladding, the electric 
field is given by  
 

1
1 0

k zE E e= , z<0,                            (5) 
               

 
3 ( )

3
k d z

bE E e −= ,z>d,                     (6) 
 
where, 2 2 2

1 ( )s sk k N ε µ= −  

, 2 2 2
3 ( )c ck k N ε µ= − , and Eb is the value of 

the field amplitude at z = d. 
The solution of Helmholtz equation in the 
nonlinear guiding layer is one of the Jacobian 
elliptic functions [24]. There are twelve 
Jacobian functions and for the case when  α > 
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0 and fn > s sε µ  the solution of the field is 
given by the cn Jacobian function 
 

2E p= 0[ ( ) ]cn q z z m+ .             (7) 
                                                                                 
The parameters q, p, and m are given by 
 

1 1
22 4

1 2 1 3( ) [ 4 ]q k bσ σ σ= + ,             (8) 
 

1
1 2

2 2
4 2 1 3 24p bσ σ σ σ

 
 = + +  

 
,   (9) 

and 
                                            

2
12 2

2 1 3

1 1
2 [ 4 ]

m
b

σ

σ σ

 = + 
+  

.      (10) 

 
where  ( )2

1 f s snσ ε µ= − ,   2 1bσ = − , 

 3 11 bσ = + ,  and 
2
0

4
12

E
b

σ
 

=  
 

 

 
The parameter z0 in Eq. (7) is a constant of 
integration. Using the mathematical properties 
of the cn function, Eq. (7) can be written in 
terms of two other Jacobi functions, sn and dn, 
without using z0 [21]. 
In order to find all the nonzero field 
components, we calculate Hx and Hz as    

                                         
1(1) 1

0
1

k z
x

ikH E e
ωµ

= ,                      (11)  

                                           
(2)

2
x

iH pq
ωµ

= − 5 6σ σ ,              (12)  

                                          
3 ( )(3) 3

3

k d z
x b

ikH E e
ωµ

−−
= ,               (13)  

 

1(1)
0

1

k z
zH E eβ

ωµ
−

= ,                      (14) 

 

 

(2)
0

2

[ ( ]zH pcn q z z mβ
ωµ
−

= + ,  (15) 
 

                                                     

            

3 ( )(3)

3

k d z
z bH E eβ

ωµ
−−

= ,                 (16)  

 
where ( )5 0sn q z zσ  = +   and  

( )6 0dn q z zσ  = +  .  
 
Matching the tangential fields at the interfaces 
z =  0 and z =  d generates the dispersion 
relation which can be written in a 
mathematical form without using the inverse 
Jacobi functions [20, 21]. In terms of V, a, b 
and b1, the dispersion relation can be written as   

                   
( ){ }

{ }
7 8 9
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1
[ ]

1
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−
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7
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2
2

9
1 3

µ
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µ µ
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2 2

0
10 1 1 bE E

p p
σ
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According to the definition of p in Eq. (9), the 

parameter 0E
p

 is only function of b and b1. 

Moreover, from Eqs. (1)  and (8), we can also 
write the product qd as a function of V, b and 
b1 as    

                                                                                           

( ) ( )
1

2 4
2 1 34qd V bσ σ = +  .       (18) 

 

In a similar manner to 0E
p

, the ratio bE
p

 can 

take the form [21]     
                              

1
1 2

2 2
11 1 3 11

1
2 2
2 1 3 2

4

4

b
bE

p b

σ σ σ

σ σ σ

 
 + −  =  

  + +  

.  (19) 

 
where 11 1 aσ = +  
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The dispersion relation can then be written in a 
normalized form. This form indicates that the 
normalized guide index b depends only on 
three independent parameters V, a, and b1.  
 
  

III. RESULTS AND DISCUSSION 
 
Simple numerical techniques can be applied to 
solve the normalized dispersion relation. We 
will consider three cases. In the first case, the 
cladding is assumed to be a NIM and the 
substrate is a positive index material (PIM). 

Therefore f

s

µ
µ

> 0 and f

c

µ
µ

< 0.  In the second 

case, the substrate is taken to be NIM with 
f

s

µ
µ

< 0 and the cladding is PIM with f

c

µ
µ

> 0. 

The third case considers both the cladding and 

substrate are NIMs with f

c

µ
µ

< 0 and f

s

µ
µ

< 0. 

 
First, we consider the case when the cladding 
layer is NIM and the substrate is PIM. For 

0.5f

c

µ
µ

= −  and 1f

s

µ
µ

= , we plot b as a 

function of V for different values of b1 as 
shown in Fig. 2. We should note that when the 
value of b1 equal to zero, we reproduce the 
results obtained for the linear guiding layer 
structure [10] in which the maximum value of 
b is 1.0. In the linear guiding layer structure, 
all the solutions correspond to guided modes 
for which (N < nf). However, for the nonlinear 
case, solutions with b > 1.0 ( N > nf ) could be 
found as shown in the figure. The figure shows 
b as a function of V for a =  0 ( s s c cε µ ε µ= ) 

which means 2 2
f cn n= , where ni is the 

refractive index of layer i. Many interesting 
features can be seen in Fig. 2. First, the value 
of b exceeds 1.0. Following the classification 
presented by Boardman et al. in Ref 20, these 
solutions correspond to surface modes. 
Second, as b1 increases (due to the increase in 
the nonlinearity constant) the range of V in 
which there are propagating modes is reduced. 
For example for b1 = 0.3, the normalized film 
thickness has the range 0 < V <  0.66, whereas 
it has the range 0 < V <  0.59 for b1 = 0.4. 
Third, there is no cutoff frequency which in 
contradiction with the behavior of the guided 

modes in a linear waveguide structure [10, 22]. 
Fourth, for small nonlinearity (small value of 
b1), the dispersion curve looks like that of a 

linear waveguide structure. When 0.5f

c

µ
µ

= − , 

1f

s

µ
µ

= , and a = 1, the universal dispersion 

curves for the nonlinear thin film waveguide 
are shown in Fig. 3 for b1 = 0.1, 0.2, 0.3, and 
0.4. The figure shows that there is no solution 
for eq. (17) in the range 0 < b < 0.2. Moreover, 
the range of V in which the solution exists is 
highly reduced for high b1. For b1 = 0.4, the 
range of V in which the solution exists is 0.45 
< V < 0.65.  
 
A comparison between the dispersion curves 
for different values of the asymmetry 
coefficient a is shown in Fig. 4. For constant 
b1, the shape of the dispersion curves for 
different values of a is almost the same with a 
shift towards higher values of V when a 
increases. For constant b1 and V, the 
normalized guide index (b) decreases with 
increasing a.     
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b

V

b1= 0.1

 
 
Fig. 2. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and PIM 
substrate. ( / 0.5f cµ µ = − , / 1f sµ µ = , a = 0).  
 
 
The dispersion characteristics of the proposed 
nonlinear waveguide structure is shown in Fig. 

5 for b1 = 0.1, a = 0, 0.5f

c

µ
µ

= − , and different 

values of  f

s

µ
µ

. As can be seen from the figure, 
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increasing f

s

µ
µ

 for constant a, f

c

µ
µ

, b1, and V 

leads to a considerable enhancement in b. 
Increasing b means that the modal index 
increases and therefore the confinement of the 
wave in the guiding layer is enhanced. 
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µf / µs = 1
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b

V

b1= 0.4

 
 
Fig. 3. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and PIM 
substrate. ( / 0.5f cµ µ = − , / 1f sµ µ = , a = 1). 
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Fig. 4. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and PIM 
substrate. ( / 0.5f cµ µ = − , / 1f sµ µ = , a = 0 
and a = 1).  
 
 
In Fig. 6, we investigate the dispersion curves 
of the nonlinear waveguide structure for 

constant b1, a, and  f

s

µ
µ

 and different values of 

f

c

µ
µ

. The figure shows dispersion 

characteristics different from those observed in 

Fig. 5. At constant a, f

s

µ
µ

, b1, and V, a 

significant enhancement in b is obtained when 
f

c

µ
µ

 decreases to -0.8.   
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Fig. 5. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and PIM 
substrate and film.  
( / 0.5f cµ µ = − , / 0.5,1,1.5f sµ µ = , a = 0).   
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Fig. 6. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and PIM 
substrate. 
( / 0.2, 0.5, 0.8f cµ µ = − − − , / 1f sµ µ = , a = 
0).   
 
 
Second, we investigate the case when the 
substrate is NIM and the cladding is PIM. 
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Fig. 7 shows the dispersion curves of the 

nonlinear structure for 0.5f

c

µ
µ

= , 1f

s

µ
µ

= − , 

and a = 0. The striking feature that can be seen 
in the figure is that there is no difference 
between the dispersion curves in Fig. 7 and 
Fig. 2  for the same value of b1. This means 
that the dispersion characteristic of nonlinear 
waveguide structure with NIM cladding and 
PIM substrate are similar to those for the same 
structure with NIM substrate and PIM 
cladding. This is in contradiction with the 
dispersion properties of a linear waveguide 
structure in which the normalized dispersion 
curves are dependent on whether the NIM 
material is present in the cladding or in the 
substrate especially for the fundamental mode 
[10]. 
 
The dispersion curves of the proposed 
nonlinear waveguides is shown in Fig. 8 for  
 a = 1 and different values of b1. It is exactly 
similar to Fig. 3.  
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Fig. 7. Normalized dispersion curves for a 
nonlinear waveguide with NIM substrate and PIM 
cladding. ( / 0.5f cµ µ = , / 1f sµ µ = − , a = 0).   
 
 

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

a = 1

µf / µs = -1
µf / µc = 0.5

b1= 0.1

b1= 0.2

b1= 0.3

 

 

b

V

b1= 0.4

 
 
Fig. 8. Normalized dispersion curves for a 
nonlinear waveguide with NIM substrate and PIM 
cladding. ( / 0.5f cµ µ = , / 1f sµ µ = − , a = 1).  
 
 
Third, we consider the case when both the 
cladding and substrate are NIMs. In this case, 

both f

s

µ
µ

and f

c

µ
µ

 are negative. Fig. 9 shows 

the modal guide index (b) versus the 
normalized film thickness (V) for 

0.5f

c

µ
µ

= − , 1f

s

µ
µ

= − , a = 0, and different 

values of b1. A number of attractive features 
can be seen in the figure. Some of these 
features are analogous to those observed in 
Fig. 2 such as the nonexistence of the cut-off 
thickness and the enhancement of b with 
increasing b1 for a given V. For waveguide 
structures with no cut-off thickness, the size of 
the guiding layer can theoretically go to zero. 
On the other hand, Fig. 9 has a distinguishable 
feature over Fig. 2 which is the independence 
of the range of V in which there is propagating 
modes on b1. The range of V does not change 
with the increase in the nonlinearity constant 
of the guiding layer.  
 

When 0.5f

c

µ
µ

= − and 1f

s

µ
µ

= − , we plot b as a 

function of V for a = 1 in Fig. 10. In this case, 
there is a cut-off frequency at which the modal 
index is equal to that of the substrate, hence b 
= 0. The cut-off thickness is crucially 
dependent on the coefficient b1. Therefore, for 
nonlinear waveguide with NIM substrate and 
cladding, there is a cut-off thickness for the 
guiding layer after which the wave 
propagation begins. 
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Finally, we investigate the dispersion 

characteristics for 0.5f

c

µ
µ

= −  and different 

values of f

s

µ
µ

. Figure 11 shows b versus V for 

different values of f

s

µ
µ

. For constant V, b is 

considerably enhanced with decreasing f

s

µ
µ

 

especially for large values of V. On the other 

hand, b versus V for different values of f

c

µ
µ

 is 

shown in Fig. 12. The behavior of the 

dispersion curves for different f

c

µ
µ

 is similar 

to that for different f

s

µ
µ

. As f

c

µ
µ

 increases, b 

is significantly reduced. 
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Fig. 9. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and 
substrate. ( / 0.5f cµ µ = − , / 1f sµ µ = − , a = 0).  
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Fig. 10. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and 
substrate. ( / 0.5f cµ µ = − , / 1f sµ µ = − , a = 1).  
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Fig. 11. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and 
substrate. 
( / 0.5f cµ µ = − , / 0.5, 1, 1.5f sµ µ = − − − , a = 
0).  
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Fig. 12. Normalized dispersion curves for a 
nonlinear waveguide with NIM cladding and 
substrate. 
( / 0.2, 0.5, 0.8f cµ µ = − − − , / 1f sµ µ = − , a = 
0).  
 
 

IV. CONCLUSION 
 
We presented three waveguide structures 
consisting of Kerr-type nonlinear guiding layer 
and at least one layer made of a negative index 
material. The dispersion characteristics of each 
structure were investigated. Many interesting 
features have been observed. When one of the 
surrounding media is made of a NIM, the 
value of the normalized guide index can 
exceed unity, a phenomenon that does not 
exist in conventional linear waveguides. 
Moreover, the range of the normalized film 
thickness in which there are propagating 
modes is dependent on the nonlinearity 
constant of the guiding layer. When both the 
cladding and substrate are NIMs, the cut-off 
thickness is found to have a significant 
dependence on the nonlinearity constant.  
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